Close
 Indian J Med Microbiol  
 

Figure 2: Schematic representation of the stop-signal paradigm. The stop-signal task consists of go and stop-signal trials. A circle is presented for 500 ms, followed by a presentation of an arrow pointing either left or right. Participants are instructed to respond as fast as possible by pressing a left or right button, depending on the direction of the arrow. In the stop trials, an auditory stop signal occurs after the presentation of the arrow, and on these trials, participants must try to withhold their responses. The latency to the sound (the stop signal delay) varies dynamically throughout the study to produce the stop-signal delay 50, where participants can inhibit approximately 50% of their responses. The stop-signal reaction time is calculated as the median go reaction time minus the stop-signal delay 50, according to the race model.[19] Image courtesy: Madsen et al., 2009[41]

Figure 2: Schematic representation of the stop-signal paradigm. The stop-signal task consists of go and stop-signal trials. A circle is presented for 500 ms, followed by a presentation of an arrow pointing either left or right. Participants are instructed to respond as fast as possible by pressing a left or right button, depending on the direction of the arrow. In the stop trials, an auditory stop signal occurs after the presentation of the arrow, and on these trials, participants must try to withhold their responses. The latency to the sound (the stop signal delay) varies dynamically throughout the study to produce the stop-signal delay 50, where participants can inhibit approximately 50% of their responses. The stop-signal reaction time is calculated as the median go reaction time minus the stop-signal delay 50, according to the race model.<sup>[19]</sup> Image courtesy: Madsen <i>et al</i>., 2009<sup>[41]</sup>